Publications in Physics, Theoretical Biology, and Systems Theory

 

[82]

J. Walleczek and G. Grössing, “Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication,” Found. Phys., in press, 2016. [ DOI | arXiv ]

[81]

G. Grössing, H.-T. Elze, J. Mesa Pascasio, and J. Walleczek, eds., Emergent Quantum Mechanics 2015, IOP Publishing, Bristol, 2016. [ http ]

[80]

J. Mesa Pascasio, S. Fussy, H. Schwabl, and G. Grössing, “Emergent quantum mechanics without wave functions,” J. Phys.: Conf. Ser.  701, p. 012036, 2016. [ DOI | arXiv ]

[79]

J. Walleczek and G. Grössing, “Is the World Local or Nonlocal? Towards an Emergent Quantum Mechanics in the 21st Century,” J. Phys.: Conf. Ser. 701, p. 012001, 2016. [ DOI | arXiv ]

[78]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “Conditions for Lorentz-invariant superluminal information transfer without signaling,” J. Phys.: Conf. Ser. 701, p. 012006, 2016. [ DOI | arXiv ]

[77]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “The quantum sweeper effect,” J. Phys.: Conf. Ser. 626, p. 012017, 2015. [ DOI | arXiv ]

[76]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “Implications of a deeper level explanation of the deBroglie-Bohm version of quantum mechanics,” Quantum Stud.: Math. Found. 2, pp. 133-140, 2015. [ DOI | arXiv ]

[75]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “Extreme beam attenuation in double-slit experiments: Quantum and subquantum scenarios,” Ann. Phys. 353, pp. 271-281, 2015. [ DOI | arXiv ]

[74]

G. Grössing, “Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics,” in Quantum Foundations and Open Quantum Systems: Lecture Notes of the Advanced School, T. M. Nieuwenhuizen, C. Pombo, C. Furtado, A. Y. Khrennikov, I. A. Pedrosa, and V. Spicka, eds., pp. 375-398, World Scientific, 2014. [ http ]

[73]

S. Fussy, J. Mesa Pascasio, H. Schwabl, and G. Grössing, “Born's Rule as Signature of a Superclassical Current Algebra,” Ann. Phys. 343, pp. 200-214, 2014. [ DOI | arXiv ]

[72]

G. Grössing, H.-T. Elze, J. Mesa Pascasio, and J. Walleczek, eds., Emergent Quantum Mechanics 2013, vol. 504, IOP Publishing, Bristol, 2014. [ http ]

[71]

G. Grössing, “Emergence of quantum mechanics from a sub-quantum statistical mechanics,” Int. J. Mod. Phys. B , pp. 145-179, 2014. [ DOI | arXiv ]

[70]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “Relational causality and classical probability: Grounding quantum phenomenology in a superclassical theory,” J. Phys.: Conf. Ser. 504, p. 012006, 2014. [ DOI | arXiv ]

[69]

J. Walleczek and G. Grössing, “The Non-Signalling theorem in generalizations of Bell's theorem,” J. Phys.: Conf. Ser. 504, p. 012001, 2014. [ DOI | arXiv ]

[68]

J. Mesa Pascasio, S. Fussy, H. Schwabl, and G. Grössing, “Modeling quantum mechanical double slit interference via anomalous diffusion: Independently variable slit widths,” Physica A 392, pp. 2718-2727, 2013. [ DOI | arXiv ]

[67]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “'Systemic nonlocality' from changing constraints on sub-quantum kinematics,” J. Phys.: Conf. Ser. 442, p. 012012, 2013. [ DOI | arXiv ]

[66]

H. Schwabl, J. Mesa Pascasio, S. Fussy, and G. Grössing, “Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field,” J. Phys.: Conf. Ser. 361, p. 012021, 2012. [ DOI | arXiv ]

[65]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “A classical framework for nonlocality and entanglement,” AIP Conf. Proc.  1508, pp. 187-196, 2012. [ DOI | arXiv ]

[64]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations,” Ann. Phys. 327, pp. 421-437, 2012. [ DOI | arXiv ]

[63]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “The Quantum as an Emergent System,” J. Phys.: Conf. Ser. 361, p. 012008, 2012. [ DOI | arXiv ]

[62]

J. Mesa Pascasio, S. Fussy, H. Schwabl, and G. Grössing, “Classical Simulation of Double Slit Interference via Ballistic Diffusion,” J. Phys.: Conf. Ser. 361, p. 012041, 2012. [ DOI | arXiv ]

[61]

G. Grössing, ed., Emergent Quantum Mechanics 2011, vol. 361, IOP Publishing, Bristol, 2012. [ http ]

[60]

G. Grössing, J. Mesa Pascasio, and H. Schwabl, “A Classical Explanation of Quantization,” Found. Phys. 41, pp. 1437-1453, 2011. [ DOI | arXiv ]

[59]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “Elements of sub-quantum thermodynamics: Quantum motion as ballistic diffusion,” J. Phys.: Conf. Ser. 306, p. 012046, 2011. [ DOI | arXiv ]

[58]

G. Grössing, “Sub-Quantum Thermodynamics as a Basis of Emergent Quantum Mechanics,” Entropy 12, pp. 1975-2044, 2010. [ DOI | http ]

[57]

G. Grössing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “Emergence and collapse of quantum mechanical superposition: Orthogonality of reversible dynamics and irreversible diffusion,” Physica A 389, pp. 4473-4484, 2010. [ DOI | arXiv ]

[56]

G. Grössing, “On the thermodynamic origin of the quantum potential,” Physica A 388, pp. 811-823, 2009. [ DOI | arXiv ]

[55]

G. Grössing, “Diffusion waves in sub-quantum thermodynamics: Resolution of Einstein's 'Particle-in-a-box' objection,” pre-print , 2008. [ arXiv ]

[54]

G. Grössing, “The Vacuum Fluctuation Theorem: Exact Schrödinger Equation via Nonequilibrium Thermodynamics,” Phys. Lett. A 372, pp. 4556-4563, 2008. [ DOI | arXiv ]

[53]

G. Grössing, “Fluid Clocks: Emergence of quantum theory from sub-quantum dynamics,” in Proceedings of the 28th Int'l. Wittgenstein Symposion on "Time and History", R. Stadler and M. Stoeltzner, eds., p. 92, (Kirchberg), 2005.

[52]

G. Grössing, “Observing quantum systems,” Kybernetes 34, pp. 222-240, 2005. [ DOI | arXiv ]

[51]

G. Grössing, “From Classical Hamiltonian Flow to Quantum Theory: Derivation of the Schrödinger Equation,” Found. Phys. Lett. 17, pp. 343-362, 2004. [ DOI | arXiv ]

[50]

G. Grössing, “Quantum cybernetics: a new perspective for Nelson's stochastic theory, nonlocality, and the Klein-Gordon equation,” Phys. Lett. A 296, pp. 1-8, 2002. [ DOI | http ]

[49]

S. Fussy, G. Grössing, and H. Schwabl, “Irreversibility in Models of Macroevolution,” Cybernetics and Systems 32, pp. 429-442, 2001. [ DOI | http ]

[48]

G. Grössing, “Nonlocality and the Time-Ordering of Events,” Cybernetics and Systems 32, pp. 335-342, 2001. [ DOI | http ]

[47]

G. Grössing, “Time's Arrow: Irreversibility from Quantum Systems to Biological Evolution. A Festschrift on the Occasion of the 10th Anniversary of the Austrian Institute for Nonlinear Studies,” Cybernetics and Systems 32, pp. 309-313, 2001. [ DOI | http ]

[46]

G. Grössing, Quantum Cybernetics: Toward a Unification of Relativity and Quantum Theory via Circularly Causal Modeling, Springer, New York, NY, 2000.

[45]

G. Grössing, “Recursions within varying contexts: Applications in quantum theory and evolutionary biology,” in Advances in Systems Research and Cybernetics, G. E. Lasker, ed., 2, pp. 56-64, (Windsor, Canada), 1999.

[44]

G. Grössing, “Noisy Recursions: Possible Applications in Evolutionary Biology and Macroeconomics,” in The Socio-Economics of Long-term Evolution. Advances in Theory, Complex Modeling and Methodology, K. S. Althaler, M. Lehmann-Waffenschmidt, and K. H. Müller, eds., Facultas, Wien, 1999.

[43]

S. Fussy, G. Grössing, and H. Schwabl, “Progressive evolution and a measure for its noise-dependent complexity,” in AIP Conference Proceedings, 465, pp. 327-338, AIP Publishing, 1999. [ DOI | http ]

[42]

P. Ackerbauer, S. Fussy, et al., “Experimental investigation of muon-catalyzed dt fusion at cryogenic temperatures,” Nucl. Phys. A 652, pp. 311-338, 1999. [ DOI | http ]

[41]

S. Fussy, G. Grössing, and H. Schwabl, “A quantitative measure of complexity in a feedback model for macroevolution,” in Proceedings of the 14th European Meeting on Cybernetics and Systems Research, ASCS, R. Trappl, ed., pp. 135-140, (Vienna, Austria), 1998. [ DOI | http ]

[40]

G. Grössing, “Oscillations in quantum theory: Means to 'observe' the environment,” in Proceedings of the 14th European Meeting on Cybernetics and Systems Research, ASCS, R. Trappl, ed., pp. 119-124, (Vienna, Austria), 1998. [ DOI | http ]

[39]

G. Grössing, “Paradoxales Umkippen,” in Information und Selbstorganisation, N. Fenzl, W. Hofkirchner, and G. Stockinger, eds., pp. 365-380, Studien Verlag, Innsbruck, Wien, 1998.

[38]

G. Grössing, “Noisy Recursions: Possible Applications in Evolutionary Biology and Macroeconomics,” in Systemorientierte Ansätze in Wirtschaft und Gesellschaft, pp. 133-137, (Graz, Karl-Franzens Universität), 1998.

[37]

S. Fussy, G. Grössing, and H. Schwabl, “A Simple Model for the Evolution of Evolution,” J. Biol. Syst. 5, pp. 341-357, 1997. [ DOI | arXiv ]

[36]

G. Grössing, “Die Beobachtung von Quantensystemen,” in Konstruktivismus und Kognitionswissenschaft. Kulturelle Wurzeln und Ergebnisse. Heinz von Foerster gewidmet, A. Müller, K. H. Müller, and F. Stadler, eds., pp. 55-74, Springer, Wien, New York, 1997.

[35]

G. Grössing, “Quantum information in an evolutionary perspective,” World Futures 50, pp. 511-522, 1997. [ DOI | http ]

[34]

G. Grössing, “Quantum cybernetics: systemic modeling versus magical mystifications of quantum theory,” in Proceedings of the 13th European Meeting on Cybernetics and Systems Research, ASCS, pp. 156-161, (Vienna, Austria), 1996.

[33]

S. Fussy, G. Grössing, and H. Schwabl, “Fractal Evolution in Deterministic and Random Models,” Int. J. Bifurcation Chaos 6, pp. 1977-1995, 1996. [ DOI | .html ]

[32]

S. Fussy, G. Grössing, and H. Schwabl, “Fractal Evolution in Discretized Systems,” in Self-Organization of Complex Structures: From Individual to Collective Dynamics, F. Schweitzer, ed., pp. 91-100, Gordon and Breach Science Publishers, London, 1996.

[31]

S. Fussy, G. Grössing, and H. Schwabl, “Hierarchically Emergent Fractal Evolution,” in Proceedings of the 13th European Meeting on Cybernetics and Systems Research, ASCS, R. Trappl, ed., pp. 189-194, (Vienna, Austria), 1996.

[30]

G. Grössing, “Quantum Cybernetics: Systemic Modeling Versus Magical Mystifications of Quantum Theory,” Cybernetics and Systems 27, pp. 513-526, 1996. [ DOI | http ]

[29]

G. Grössing, “An Experiment to Decide between the Causal and the Copenhagen Interpretations of Quantum Mechanics,” Ann. N. Y. Acad. Sci. 755, pp. 438-444, 1995. [ DOI | http ]

[28]

S. Fussy and G. Grössing, “Fractal evolution of normalized feedback systems on a lattice,” Phys. Lett. A 186, pp. 145-151, 1994. [ DOI | arXiv ]

[27]

S. Fussy and G. Grössing, “Features of Self-Organization in Quantum Cellular Automata,” in The Paradigm of Self-Organization, G. Dalenoort, ed., 2, pp. 143-156, Gordon and Breach Science Publishers, London, 1994.

[26]

H. Schwabl and G. Grössing, “Quantum Cellular Automata and Entropy,” in The Paradigm of Self-Organization, G. Dalenoort, ed., 2, pp. 121-142, Gordon and Breach Science Publishers, London, 1994.

[25]

G. Grössing, “Late-Choice Experiments: Investigating the Possibility of Self-Organization on the Quantum Level,” in The Paradigm of Self-Organization, G. Dalenoort, ed., 2, pp. 111-120, Gordon and Breach Science Publishers, London, 1994.

[24]

S. Fussy, G. Grössing, H. Schwabl, and A. Scrinzi, “Nonlocal computation in quantum cellular automata,” Phys. Rev. A 48, pp. 3470-3477, 1993. [ DOI | http ]

[23]

G. Grössing, Das Unbewusste in der Physik: über die objektalen Bedingungen naturwissenschaftlicher Theoriebildung, Turia & Kant, 1993.

[22]

P. Ackerbauer, S. Fussy, et al., “Survey of experimental results on μCF including hyperfine effects,” Hyperfine Interact.  82, pp. 243-258, 1993. [ DOI | http ]

[21]

G. Grössing, “Simulation of nonlocal computation among neuronal modules with quantum cellular automata,” J. Biol. Syst. 01, pp. 59-68, 1993. [ DOI | http ]

[20]

G. Grössing, “Is Quantum Theory Relevant for the Description of Brain Functions?,” Cognitive Systems 3, pp. 289-304, 1992.

[19]

G. Grössing and A. Zeilinger, “Zeno's paradox in quantum cellular automata,” Physica D 50, pp. 321-326, 1991. [ DOI | http ]

[18]

J. Werner, S. Fussy, et al., “Steady State in D/T Gas: Kinetics and Experimental Analysis,” Muon catalyzed Fusion 5/6, pp. 209-215, 1990.

[17]

C. Petitjean, S. Fussy, et al., “Direct measurement of DT Sticking,” Muon catalyzed Fusion 5/6, pp. 261-275, 1990.

[16]

T. Case, S. Fussy, et al., “Neutron Analysis of the μ89 PSI Sticking Experiment,” Muon catalyzed Fusion 5/6, pp. 327-332, 1990.

[15]

P. Ackerbauer, S. Fussy, et al., “Investigation of μCF Processes by Detection of Fusion Neutrons: Methods of Analysis for Time Spectra,” Muon catalyzed Fusion 5/6, pp. 431-436, 1990.

[14]

K. Lou, S. Fussy, et al., “New μCF Experience with the Modular LNPI Ionization Chamber,” Muon catalyzed Fusion 5/6, pp. 525-532, 1990.

[13]

G. Grössing, “Quantum systems as 'order out of chaos' phenomena,” Nuov. Cim. B 103, pp. 497-509, 1989. [ DOI | http ]

[12]

G. Grössing, “Gravity as a Pure Quantum Phenomenon,” in Problems in Quantum Physics, L. Kostro et al., eds., pp. 551-574, World Scientific Publishing, Singapore, 1989.

[11]

G. Grössing, “The Universal Principle of Perception and Its Inadequacy in Complex Systems,” in Advances in Systems Research and Cybernetics, G. E. Lasker, ed., pp. 139-145, (Windsor, Canada), 1989.

[10]

G. Grössing, “Quantum Cybernetics and Quantum Cellular Automata: Possible Models of Quantum Systems as 'Order Out Of Chaos' Phenomena,” in Advances in Systems Research and Cybernetics, G. E. Lasker, ed., pp. 539-545, (Windsor, Canada), 1989.

[9]

G. Grössing and A. Zeilinger, “A conservation law in quantum cellular automata,” Physica D 31, pp. 70-77, 1988. [ DOI | http ]

[8]

G. Grössing and A. Zeilinger, “Structures in quantum cellular automata,” Physica B+C 151, pp. 366-369, 1988. [ DOI | http ]

[7]

G. Grössing and A. Zeilinger, “Quantum Cellular Automata, A Corrigendum,” Complex Systems 2, pp. 611-623, 1988.

[6]

G. Grössing, “Comparison of classical and quantum lattice properties with the aid of cellular automata,” Phys. Lett. A 131, pp. 1-7, 1988. [ DOI | http ]

[5]

G. Grössing and A. Zeilinger, “Quantum Cellular Automata,” Complex Systems 2, pp. 197-208, 1988.

[4]

G. Grössing, “How does a Quantum System perceive its Environment?,” in Microphysical Reality and Quantum Formalism, A. Van der Merwe et al., eds., pp. 225-238, Kluwer Academic Publishers, Dordrecht, 1988.

[3]

G. Grössing, “Real quantum cybernetics,” Phys. Lett. A 121, pp. 259-266, 1987. [ DOI | http ]

[2]

G. Grössing, “Quantum cybernetics and its test in 'late choice' experiments,” Phys. Lett. A 118, pp. 381-386, 1986. [ DOI | http ]

[1]

G. Grössing, A. Ng, and K. E. Lassila, “Study of Quark Fragmentation with Different Recombination Functions,” Acta Physica Austriaca 55, pp. 233-243, 1984.


This file was generated by bibtex2html 1.95.